Comparison Results Between Usual Backpropagation and Modified Backpropagation with Weighting: Application to Radar Detection
نویسندگان
چکیده
This paper presents some relevant results of a novel variant of the Backpropagation Algorithm to be applied during the Multilayer Perceptrons learning phase. The novelty consists in a weighting operation when the MLP learns the weights. The purpose is to modify the Mean Square Error objective giving more relevance to less frequent training patterns and resting relevance to the frequent ones. The inherent statistical distribution of training patterns is used to quantify how frequent a pattern is. The results, applied to a radar detector, show that Backpropagation with Weighting training requires much less training patterns maintaining the Artificial Neural Network performance.
منابع مشابه
A Flexible Link Radar Control Based on Type-2 Fuzzy Systems
An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...
متن کاملInvestigation of Mechanical Properties of Self Compacting Polymeric Concrete with Backpropagation Network
Acrylic polymer that is highly stable against chemicals and is a good choice when concrete is subject to chemical attack. In this study, self-compacting concrete (SCC) made using acrylic polymer, nanosilica and microsilica has been investigated. The results of experimental testing showed that the addition of microsilica and acrylic polymer decreased the tensile, compressive and bending strength...
متن کاملRadar image segmentation using recurrent artificial neural networks
This paper discusses the application of artificial neural networks to the segmentation of Doppler radar images, in particular the detection of oil spills within sea environments, based on a classification of radar backscatter signals. Best results have been achieved with recurrent backpropagation networks of an architecture similar to that of Elman's Simple Recurrent Network (1990). These recur...
متن کاملRadar Image Segmentation using Recurrent Artificial Neural Networks1
This paper discusses the application of artificial neural networks to the segmentation of Doppler radar images, in particular the detection of oil spills within sea environments, based on a classification of radar backscatter signals. Best results have been achieved with recurrent backpropagation networks of an architecture similar to that of Elman's Simple Recurrent Network (1990). These recur...
متن کاملPerformance Comparison between Backpropagation Algorithms Applied to Intrusion Detection in Computer Network Systems
In this paper a topology of neural network intrusion detection system is proposed on which different backpropagation algorithms are benchmarked. The proposed methodology uses sampled data from KddCup99 data set, an intrusion detection attacks database that is a standard for the evaluation of intrusion detection systems. The performance of backpropagation algorithms implemented in batch mode, is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007